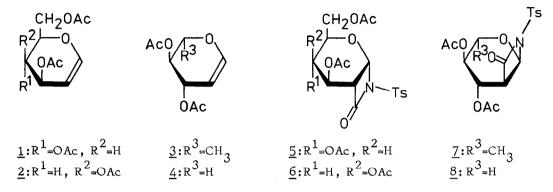
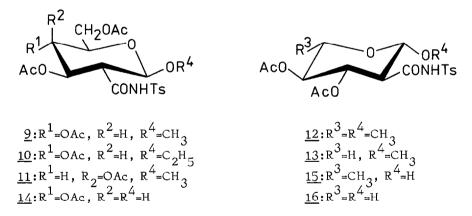
THE SYNTHESIS OF OPTICALLY PURE *B*-LACTAMS DERIVED FROM SUGARS. HIGH-PRESSURE [2+2] CYCLOADDITION OF TOLUENE-4-SULPHONYL ISOCYANATE TO GLYCALS.

M.Chmielewski,^{*} Z.Kałuża, C.Bełżecki, P.Sałański and J.Jurczak Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland

<u>Abstract:</u> [2+2] Cycloaddition of toluene -4-sulphonyl isocyanate to glycals $\underline{1} - \underline{4}$ at room temperature under 10 kbar pressure gave respective β -lactams $\underline{5} - \underline{8}$ in good yields. The reaction proceeds regio- and stereospecifically to afford the four--membered ring in position trans to the acetoxy group at C-3 of the glycal moiety.


Addition of isocyanates to glycals is a potential way for the synthesis of enantiomerically pure β -lactams. Owing to the enol ether structure of glycals, [2 + 2] cycloaddition should lead to the formation of cyclic N-glycosylamido derivatives, which can be precursors of various β -lactams, particularly of oxapenams and oxacephams.

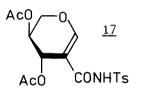
[2 + 2] Cycloaddition of isocyanates to 3,4-dihydro-2H-pyran derivatives has already been attempted several times,¹⁻³ but only in the case of unsubstituted¹ or 5-substituted³ 3,4-dihydro-2H-pyran, the corresponding *A*-lactams were obtained. Glycals were found to be unreactive in cycloaddition of this type; isocyanate acts only as a Lewis acid, causing known dimerization of sugar substrate.²


Despite these discouraging reports, we decided to return to the problem of [2 + 2] cycloaddition of isocyanates to glycals using the high-pressure technique. It is well known that high pressure accelerates the rate of reactions characterized by negative volumes of activation, and greatly enhances stereoselectivity, whereas it retards the retro-reaction. For [2 + 2] cycloadditions the volume of activation varies from -30 to -50 cm³/mol, and this pro+ misses significant acceleration of the reaction by high-pressure.⁴

Toluene-4-sulphonyl isocyanate and glycals $\underline{1} - \underline{4}$ were selected as model compounds. All high-pressure experiments were performed according to the technique described previously.⁵ The isocyanate (1.5 equiv.) was condensed with glycals $\underline{1} - \underline{4}$ (1 equiv.) in ether solution at room temperature under 10 kbar for 18 hrs. Except product <u>6</u> derived from galactal <u>2</u>, products <u>5</u>,<u>7</u> and <u>8</u> crystallized from the reaction mixture in pure from in good yields (60-77%).⁶ Compound <u>6</u> was obtained and characterized only as a crude syrup, spontaneously separated

from ether solution and evaporated to dryness. The β -lactam structure of compounds 5 - 8 was determined from their spectral and analytical data.⁷ The cycloadditions proceeded regioand stereospecifically, yielding a single isomer in each case; the isocyanate enters exclusively the trans position relative to the acetoxy group at C-3.

The configurations of 5 - 8 were assigned via opening of the β -lactam ring with alcohol or water. Upon heating in toluene solution, compounds 5 - 8 undergo retro-addition to afford the starting glycals. When treated with alcohols or water (tetrahydrofuran - water solution), 5 - 8 undergo at room temperature rapid opening of the β -lactam ring to give the respective glycosides $9 - 13^8$ or free sugars $14 - 16^8$. The assignment of configuration to 9 - 16 is straightforward and hence it proves unequivocally also the configuration of β -lactams 5 - 8.



The high-pressure reaction between isocyanates and glycals is a new interesting contribution to the explanation of the nature of [2 + 2] cycloaddition; it permits the development of a simple, efficient and stereospecific method for β -lactam skeleton construction.

This work was supported by the Polish Academy of Sciences MR-I.12 grant.

References and Notes

- 1. E.Effenberger and R.Gleiter, Chem.Ber., 97, 1576 (1964).
- R.H.Hall, A.Jordaan, and G.J.Laurens, J.ChemSoc., Perkin I, <u>1973</u>, 38;
 R.H.Hall, A.Jordaan, and O.G.de Villiers, ibid, <u>1975</u>, 626.
- 3. A.G.M.Barrett, A.Fenwick, and M.J.Betts, J.Chem.Soc., Chem.Commun., 1983, 299.
- 4. T.Asano and W.J.LeNoble, Chem.Rev., 78, 407 (1978).
- 5. All experiments were carried out in a piston-cylinder high-pressure apparatus described earlier: J.Jurczak, Bull.Chem.Soc.Jpn., <u>52</u>, 2046 (1979). The reaction mixture (20-30% abs. ether solution) was placed in a Teflon ampoule which was inserted into a high-pressure vessel filled with ligroin as transmission medium.
- 6. The mother liquor contained (TLC) traces of substrate (1 4) and of a more polar

compound which in case of cycloaddition to xylal ($\underline{4}$) was isolated and characterized as 3-substituted xylal $\underline{17}$. Such rearranged products have been observed previously.^{1,3} Elevation of the temperature of high-pressure cycloaddition to 60°C increases the content of amide $\underline{17}$ (TLC).

7. All new compounds gave satisfactory spectroscopic and analytical data. Only selected data are given below. <u>5</u>: m.p. 102-4°C; **[~]**_D + 80.3° (c 1, CHCl₃); IR (nujol): 1800 cm⁻¹ (*A*-lactam); ¹H NMR (CDCl₃): 3.60 (dd, 1H, J_{1,2} = 5.2, J_{2,3} = 2.5 Hz, H - 2), 4,98 (t, 1H , J_{3,4} = 4,8, J_{4,5} = 5.9 Hz, H-4), 5.35 (m, 1H, H-3), 5.98 ppm (d, 1H, H-1). <u>6</u>: syrup; IR (CHCl₃): 1810 cm⁻¹; ¹H NMR (CDCl₃): 3.40 (t, 1H, J_{1,2} = J_{2,3} = 5.3Hz, H-2), 6.03 ppm (d, 1H, H-1).

<u>7</u>: m.p. 95-7°C; $[A]_D$ -110.0° (c 1, CHCl₃); IR (CHCl₃): 1805 cm⁻¹; ¹H NMR (CDCl₃): 3.58 (bd, 1H, $J_{1,2} = 5.4$ Hz, H-2), 4.77 (t, 1H, $J_{3,4} = 5.2$, $J_{4,5} = 7.3$ Hz, H-4), 5.30 (bd, 1H, H-3), 5.95 ppm (d, 1H, H-1).

<u>8</u>: m.p. 88-90°C; $[\sigma]_{D}$ -110.0° (c 1, CHCl₃); IR (CHCl₃): 1810 cm⁻¹; ¹H NMR (CDCl₃): 3.59 (bd, 1H, J_{1,2} = 5.1 Hz, H-2), 4.98 (q, 1H, J_{3,4} = 4.8, J_{4,5} = 5.5, J_{4,5} = 5.7 Hz, H-4), 5.33 (m, 1H, w/2 = 10.0 Hz, H-3), 5.95 ppm (d, 1H, H-1). <u>17</u>: m.p. 78-81°C; $[\sigma]_{D}$ + 56° (c 1, CHCl₃); IR (CHCl₃): 3200, 1750, 1725, 1610 cm⁻¹; ¹H NMR (CDCl₃): 4.20 (bd, 1H, J_{5,5} = 12.7 Hz, H-5), 4.49 (bd, 1H, H-5'), 5.08 (bs, 1H, H-4), 5.51 (bs, 1H, H-3), 7.97 ppm (s, 1H, H-1).

8. <u>9</u>: m.p. 92-3°C; $[d]_{D}$ + 45° (c 1, CHCl₃); IR (CHCl₃): 3370, 1760 cm⁻¹; ¹H NMR (CDCl₃): 2.80 (dd, J_{1,2} = 8.3, J_{2,3} = 10.7 Hz, H-2), 4.51 (d, 1H, H-1), 4.99 (t, 1H, J_{3,4} = 9.1, J_{4,5} = 9.8 Hz, H-4), 5.47 ppm (t, 1H, H-3). <u>10</u>: m.p. 63-5°C; $[d]_{D}$ + 27.5° (c 1, CHCl₃); IR (CHCl₃): 3360, 1750 cm⁻¹; ¹H NMR (CDCl₃): 2.76 (dd, 1H, J_{1,2} = 8.3, J_{2,3} = 10.7 Hz, H-2), 4.60 (d, 1H, H-1), 5.00 (t, 1H, J_{3,4}=9.1, J_{4,5} = 9.6 Hz, H-4), 5.51 ppm (t, 1H, H-3). <u>11</u>: m.p. 61-5°C; $[4]_{1}$ + 16.6° (c 1, CHCl₃); IR (CHCl₃): 3360, 1750 cm⁻¹; ¹H NMR $(CDCl_3): 2.85 \text{ (dd, 1H, } J_{1,2} = 8.2, J_{2,3} = 10.8 \text{ Hz, H-2}), 4.44 \text{ ppm (d, 1H, H-1)}.$ <u>12</u>: m.p. 58-60°C; $[J_D]_{D}$ -60.6° (c 1, CHCl₃); IR (CHCl₃): 3380, 1755, 1730 cm⁻¹; ¹H NMR (CDCl₃): 2.75 (dd, 1H, $J_{1,2} = 8.4$, $J_{2,3} = 10.6$ Hz, H-2), 4.46 (d, 1H H-1), 4.74 (t, 1H, $J_{3,4} = 9.0$, $J_{4,5} = 9.1$ Hz, H-4), 5.46 ppm (t, 1H, H-3). <u>13</u>: m.p. 79-82°C; $[\alpha]_D = 29.2°$ (c 1, CHCl₃); IR (CHCl₃): 3370, 1755 cm⁻¹; ¹H NMR $(CDCl_3): 2.70 \text{ (dd, 1H, } J_{1,2} = 7.6, J_{2,3} = 10.0 \text{ Hz, H-2}), 4.12 \text{ (d, 1H, H-1), 4.97}$ (m, 1H, $J_{3,4} = 9.5$, $J_{4,5} = 5.3$, $J_{4,5} = 9.0$ Hz, H-4), 5.43 ppm (t, 1H, H-3). <u>14</u>: m.p. 121-2°C; $[\alpha]_{D}$ + 53.8° (c 1, CHCl₃); IR (CHCl₃): 3680, 3580, 3460, 3270, 1750 cm⁻¹; ¹H NMR (acetone-d₆): 2.81 (dd, 1H, $J_{1,2} = 8.1$, $J_{2,3} = 10.6$ Hz, H-2), 4.85 (t, 1H, $J_{3,4} = 8.7, J_{4,5} = 9.9$ Hz, H-4), 4.95 (d, 1H, H-1), 5.37 ppm (dd, 1H, H-3). 15: m.p. 134-5°C; []] - 61.8° (c 1, CHCl₃); IR (CHCl₃): 3590, 3480, 3370, 1755, 1725 cm^{-1} ; ¹H NMR (CDCl₃): 2.81 (dd, 1H, J_{1,2} = 8.5, J_{2,3} = 11.0 Hz, H-2), 4.79 (t, 1H, $J_{3,4} \approx J_{4,5} \approx 9.0$ Hz, H-4), 5.01 (d, 1H, H-1), 5.45 ppm (t, 1H, H-3). <u>16</u>: m.p. 96-7°C; $[\alpha]_{D}$ -8.6° (c o.57, acetone); IR (CHCl₃): 3640, 3580, 3480, 3260, 1740, 1715 cm⁻¹; ¹H NMR (acetone-d₆): 2.79 (dd, 1H, $J_{1,2} = 9.0$, $J_{2,3} = 11.7$ Hz, H-2), 4.82 (m, 1H, $J_{3,4} = 9.0$, $J_{4,5} = 10.0$, $J_{4,5} = 5.7$ Hz, H-4), 4.87 (d, 1H, H-1), 5.36 ppm (t, 1H, H-3).

(Received in UK 6 August 1984)